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Physics is like sex:sure
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results,
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Chapter 1

Particloduction

1.1 Motivation
The most fundamental question which everyone asks is “What are the elemen-
tary things in this universe?” -which particle physics soughts to answer. For
me, learning particle physics is a journey into the fundamental nature of the
universe, offering profound insights into its most basic building blocks. The
intellectual challenge and personal fulfillment I gain from understanding the
cosmos make particle physics an immensely rewarding endeavor.

1.2 Current Picture
The Standard Model of particle physics is a comprehensive theory describing the
fundamental particles and their interactions, excluding gravity. It categorizes
particles into fermions and bosons.

1.2.1 Fermions
Fermions are the building blocks of matter, divided into quarks and leptons,
each with three generations:

Quarks:

• First Generation: Up(u) and Down(d) quarks.

• Second Generation: Charm(c) and Strange(s) quarks.

• Third Generation: Top(t) and Bottom(b) quarks.

Leptons:

• First Generation: Electron(e) and Electron Neutrino(νe).
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• Second Generation: Muon(µ) and Muon Neutrino(νµ).

• Third Generation: Tau(τ) and Tau Neutrino(ντ ).

1.2.2 Bosons
Bosons are force carriers mediating fundamental interactions:

• Photon(γ): Mediates the electromagnetic force.

• W and Z Bosons: Mediate the weak force.

• Gluons(g): Mediate the strong force.

• Higgs Boson(H): Provides particles with mass.

1.3 The Fundamental Forces
In this universe,there are four fundamental forces, or interactions namely gravi-
tational, electromagnetic, strong nuclear, and weak nuclear. Each of these forces
has distinct characteristics in terms of range and strength:

7



Elementary Particle Physics

Gravitational Force:

It is an infinite range force that acts between objects having mass. Despite
being the weakest of the four, it is significant on large scales, such as between
planets, stars, and galaxies. Classical theory of gravity was given by Newton,
in his famous law of universal gravitation. The relativistic generalisation is
the general relativity theory by Einstein, and its quantum version is yet to
be formulated. The hypothetical mediator particle is the Graviton (having
spin = 2).

Electromagnetic Force:

It is the force acting between electrically charged particles. It has an infinite
range and is much stronger than gravitation. The governing theory correspond-
ing to it is electrodynamics, developed by Maxwell (consistent with relativity).
The quantum version of it is known as QED, and mediator particle is the Pho-
ton.

Strong Nuclear Force:

It is a very short range force, in the order of 10−15 meters, and is the strongest of
all. It acts between quarks and is instrumental in binding protons and neutrons
together in the nucleus. The theory governing this force is known as quantum
chromodynamics(pioneered by Yukawa) and mediator particles are the Gluons,
which are total 8 in number.

Weak Nuclear Force:

Its the force responsible for radioactive decay and certain nuclear reactions. It
has a very short range, and is stronger than gravitational force but weaker than
electromagnetic and strong nuclear forces. It acts on both quarks and leptons.
The governing theory is known as Glashow-Weinberg-Salam theory or simply
flavourdynamics. The mediator particle are W± and Z.

Due to their diminutive size and rapid motion, particles necessitate the ap-
plication of quantum mechanics and special relativity for comprehensive un-
derstanding. These foundational principles are indispensable in the realm of
particle physics. Let’s begin with them!
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Chapter 2

Catch the Light!

In 1905, Albert Einstein developed the Special Theory of Relativity, which as-
serts that the laws of physics hold true in all inertial frames of reference i.e.
they apply equally in any non-accelerating frame. Special relativity introduced
the constancy of the speed of light for all observers and the interdependence of
space and time.

2.1 Lorentz Transformations
Consider a frame of reference, S and another frame, S’ moving with relative
uniform speed v along a direction,say x-axis. Let (x, y, z, t) and (x′, y′, z′, t′) be
the coordinates of an event in S and S’, and further suppose that both coordinate
system coincide at t=0. Then the relation between them is given by Lorentz
transformation equations:

x′ = γ(x− vt)
y′ = y

z′ = z

t′ = γ(t− vx/c2)

where γ = 1/
√

1− v2/c2

The inverse lorentz transformation can be written as:

x′ = γ(x+ vt)
y′ = y

z′ = z

t′ = γ(t+ vx/c2)
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2.1.1 Matrix Notations
These equations can be written using matrix notations more conveniently,using
shorthand

xµ = (ct, x, y, z)

with µ varying from 0 to 3, i.e. x0 = ct, x1 = x, x2 = y and x3 = z, commonly
called as four-vector. Equations can be written as

x
′µ = Λµνxν

where Λ is matrix: 
γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1


where ν is summed over 0 to 31. Here µ+ 1 is the column number and ν + 1 is
the row number of the matrix. This notation works in all cases, the velocity of
frames S and S’ need not be parallel - just Λ becomes more complicated.

2.1.2 Invariant
This is the quantity which has the same value in any inertial frame of reference
and is conserved under lorentz transformation. It’s quite similar to the norm,
generally defined in the vector space.

I = (x0)2 − (x1)2 − (x2)2 − (x3)2

In terms of matrix notations, it can be represented as

I = c2t2 − x2 − y2 − z2

I =
3∑

µ=0

3∑
ν=0

gµνx
µxν

I = gµνx
µxν (Einstein Notation)

where g, known as metric, is defined as
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


Taking this further, we define covariant (index down) xµ as

xµ = gµνx
ν

1Known as Einstein’s summation convention, x′µ =
∑3

ν=0 Λµνxν
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Figure 2.1: Spacetime diagram

i.e. x0 = ct, x1 = −x, x2 = −y and x3 = −z. Therefore I becomes:

I = xµx
µ

The index up notation is known as contravariant. These notation generalise
for all four-vectors. For any two four-vectors aµ and bµ, scalar product is defined
as

a · b = aµbν = a0b0 − a1b1 − a2b2 − a3b3

Now if

I > 0, xµ is time-like
I < 0, xµ is space-like
I = 0, xµ is light-like

Some Math around this notation:

Consider a n-dimensional vector space with orthogonal basis B, e1, e2, ......en.
Let B’, e′1, e′2, ......e′n be the new basis. Then the relation between them can
given as
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
e′1
.
.
e′n

 =


e1·e′1
|e1|2 . .

en·e′1
|en|2

. . . .

. . . .
e1·e′n
|e1|2 . .

en·e′n
|en|2



e1
.
.
en


All vectors in the space can be represented as linear combinations of the basis
i.e v =

∑n
i=1 aiei. The coordinate vectors ai’s change as B → B’ accordingly-

a′1
.
.
a′n

 =


e1·e′1
|e′1|2

. .
en·e′1
|e′1|2

. . . .

. . . .
e1·e′n
|e′n|2

. .
en·e′n
|e′n|2



a1
.
.
an


The above matrix is the transpose of inverse of the previous one i.e. if former
matrix was Λ,then the above one is (Λ−1)T. The vectors like v, which change in-
versely to their base change matrix, are known as contravariant(vα). Consider
the case of gradient of a scalar function in B -

∇f =
n∑
i=1

∂f

∂xi
ei

If the base is changed from B to B’, by applying chain rule and above mentioned
relations, the modified gradient comes out to be -

(∇f)′ = Λ∇f

The vectors like gradient2, which change same as their base change matrix, are
known as covariant(vα).

2.1.3 Tensors
The above mentioned contravariant and covariant vectors can be combined to
form a multi-dimensional array called tensors. A tensor of rank (or type) [m,n]
has m contravariant (upper) indices and n covariant (lower) indices:

T = T i1i2...imj1j2....jn

Generally a tensor can be produced by multiplying vectors and covectors, or
covectors and covctors together without pairing them up. This results in a
array formation. For example,

sµν := xµyν =

x1 · y1 x1 · y2 x1 · y3
x2 · y1 x2 · y2 x2 · y3
x3 · y1 x3 · y2 x3 · y3


2Every gradient is covector but not vice-versa
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The tensor t can be symmetric or antisymmetric depending on swapping of
indices µ and ν. If the tensor is symmetric,

tµν = tνµ

and if it is anti-symmetric
tµν = −tνµ

2.1.4 Tensor Product
It combines two tensors to form a new tensor. The resultant rank is the sum of
ranks of original tensor. Given two tensors T and S, the tensor product T ⊗ S
is defined such that if T is of rank (m,n) and S is of rank (p, q), then T ⊗ S is
a tensor of rank (m+ p, n+ q).

If T has components T i1...imj1...jn
and S has components Sk1...kp

l1...lq
, the components

of the tensor product T ⊗ S are given by:

(T ⊗ S)i1...imk1...kp
j1...jnl1...lq

= T i1...imj1...jn
S
k1...kp
l1...lq

Properties of Tensor Product
Linearity

The tensor product is linear in both of its arguments. For tensors T,U of the
same type and a tensor S:

(T + U)⊗ S = T ⊗ S + U ⊗ S

T ⊗ (S + V ) = T ⊗ S + T ⊗ V

Associativity

The tensor product is associative. For tensors T, S,R:

(T ⊗ S)⊗R = T ⊗ (S ⊗R)

Distributivity

The tensor product distributes over tensor addition. For tensors T, S, U, V :

(T ⊗ S)⊗ (U ⊗ V ) = (T ⊗ U)⊗ (S ⊗ V )

2.2 General results of Special Relativity
Relativity of Simultaneity:

If two events happen simultaneously in reference frame S but at different loca-
tions, they will not occur at the same time in reference frame S’. If tA = tB ,

t′A = t′B + γv(xB − xA)
c2
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Figure 2.2: Length Contraction

Length Contraction:

Length of an object moving relative to an observer appears shorter along its
direction of motion. Dimensions perpendicular to the motion remain unaffected.

Lnew = L0

γ

where L0 is length measured when object is at rest.

Time Dilation

Time appears to pass slower for an observer in motion relative to a stationary
observer.

T = γT ′

Relativistic Velocity Addition

If an object moves with velocity v relative to S’ and S’ moves with velocity u
relative to S, then velocity of object relative to S is given by

V = u+ v

1 + uv
c2
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2.3 Energy and Momentum
Similar to position and time, energy and momentum can also be represented by
four-vector.

pµ = (E
c
, px, py, pz)

where E and p are related by-

E2 = (pc)2 + (m0c
2)2

m0 being the rest mass.
The pµ is a contravariant vector, and follows same transformation laws as es-
tablished earlier. The invariant in this case is

pµpµ = (E
c

)2 − p2 = (m0c)2

Proper Time

It refers to the time interval measured by a clock that is moving along with the
object i.e. in the rest frame of object. Denoted by τ .

dτ = dt

γ

Proper time is a invariant quantity.

Proper Velocity

Likewise time, let’s define proper velocity as well. It is the rate of change of
distance (in laboratory frame) with respect to proper time. It is also a four-
vector.

ηµ = dxµ

dτ
= γ

dx

dt

and
ηµηµ = γ2(c2 − v2) = c2

2.4 Collisions
Similar to classical collisions, following quantities are conserved in relativistic
collisions-

1. Total energy: Here energy is conserved unlike mass. E = mc2

2. Total momentum: Momentum is conserved.

Can be represented by equation-

pµA + pµB = pµC + pµD
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Chapter 3

An Apple and a Cat

Classical Mechanics

3.1 Newton’s Laws of Motion
Sir Isaac Newton’s laws are fundamental to classical mechanics:

• First Law (Law of Inertia): Objects remain at rest or in uniform
motion unless acted upon by an external force. Mathematically, this can
be expressed as:

~F = 0⇒ constant velocity

• Second Law (Law of Acceleration): The acceleration of an object is
directly proportional to the net force acting on it and inversely propor-
tional to its mass:

~F = m~a

where ~F is the net force, m is the mass of the object, and ~a is its acceler-
ation.

• Third Law (Action-Reaction Law): For every action, there is an equal
and opposite reaction. If object A exerts a force ~FA→B on object B, then
object B exerts a force −~FA→B on object A.

3.2 Conservation Laws
Conservation laws describe fundamental properties of isolated systems:

• Conservation of Energy: The total energy E within an isolated system
remains constant over time:

dE

dt
= 0⇒

n∑
i=1

Ei =
n∑
i=1

E′i

18
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• Conservation of Momentum: The total momentum ~p of an isolated
system remains constant:

d~p

dt
= 0⇒

n∑
i=1

~pi =
n∑
i=1

~p′i

• Conservation of Angular Momentum: The total angular momentum
~L of an isolated system remains constant:

d~L

dt
= 0⇒

n∑
i=1

~Li =
n∑
i=1

~L′i

Phase Space: The space of positions in components of momentum is termed as
phase space. For example, a harmonic oscillator in phase space executes circular
motion in phase lengths of different radii corresponding to different energies.
In terms of potential energy V , force can be also written as:

F (~r, t) = −∇V (~r, t)

3.3 Lagrangian Mechanics
3.3.1 D’Alembert’s Principle
D’Alembert’s principle states that the total virtual work done by all forces acting
on a system in equilibrium is zero:

n∑
i=1

~Fi · δ~ri = 0

Here, ~Fi represents the forces acting on each particle of the system, and δ~ri
denotes the virtual displacements of these particles.
Virtual work is defined as the work done by a force acting through a virtual dis-
placement, which is a hypothetical small displacement satisfying the constraints
of the system.

3.3.2 Action
Action is a quantity that describes the behavior of a system over time. It is
defined as

A =
∫ t1

t0

L(r, ṙ) dt

where L is the Lagrangian, r and is the position of the object and ṙ is velocity
of the object. According to fundamental lemma of calculus of variations, δf of
a function can be concentrated on an arbitrarily small interval, but not on a
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single point. If a continuous function f on an open interval (a, b) satisfies the
equation ∫ b

a

f(x)h(x) dx = 0

for all sufficiently smooth functions h(x) on (a, b) ⇒ f(x) = 0.

3.3.3 Euler-Lagrangian Equation
As all things in nature try to remain in equilibrium, optimising their path each
step, they follow principle of least action, according to which

∂A

∂xi
= 0

Solving by varying this equation over ~r, we get

∂L
∂xi
− d

dt

∂L
∂ẋi

= 0

This is the Euler-Lagrangian equation.
For moving particle in a potential field, Lagrangian L is generally defined as:

L = 1
2mṙ

2 − V (r)

Putting this value in the equation yields the familiar,

−∂V (x)
∂x

= m
d2x

dt2

This implies thar Lagrangian is a function which contains information about
the entire laws governing the physics of a particular system. Also, Lagrangian
in invariant under change of coordinate system.

3.4 Hamiltonian Mechanics
3.4.1 The Hamiltonian
Let us differentiate our beloved L w.r.t time t, assuming L has no explicit time
dependence. Also let p = ∂L

∂ṙ be the canonical momentum, then

dL
dt

=
n∑
i=1

∂L
∂xi

dxi
dt

+ ∂L
∂ẋi

dẋi
dt

dL
dt

=
n∑
i=1

d(piẋi)
dt
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Bringing both quantities on same side,

d(
∑
i piẋi − L)
dt

= 0

This quantity
∑
i piẋi−L = H is known as Hamiltonian, which is the lagrangian

analogue for energy, as clearly visible as it is constant w.r.t to time(conservation
law fulfiled). In general hamiltonian function H is written as

H = 1
2mṙ

2 + V (r) = E

If the Lagrangian has an explicit dependence on time, L(x, ẋ, t), the time deriva-
tive of H turns out to be -

dH
dt

= −∂L
∂t

3.4.2 Hamiltonian Equations
The Hamiltonian equations are the equations of motion for a system in terms
of the canonical coordinates and momenta.

dr

dt
= ∂H

∂p

dp

dt
= −∂H

∂r

The Hamiltonian equations can be derived from the Lagrangian equations by
using the relation between L andH. These can also be derived from the principle
of least action by using the Legendre transform to convert L in H.

Quantum Mechanics
“God doesn’t play dice” - statement by Albert Einstein clearly defines what
quantum mechanics indeed is. Unlike classical mechanics, this is a complete
probabilistic theory, where amateurs like me, try to find certainity.

3.5 The Wave Function
The wave function is a mathematical function that describes the quantum state
of a physical system. It is a complex-valued function of position and time,
denoted by ψ(x, t). The wave equation, also known as the Schrödinger equation,
is a partial differential equation that gives relation between ψ, x and t, just like
its classical counterpart. It is given by-

ι~
∂ψ

∂t
= − ~2

2m
∂2ψ

∂x2 + V ψ
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3.5.1 Copenhagen Interpretation
The Copenhagen interpretation is the most widely accepted interpretation of
quantum mechanics. It states that the wave function ψ is a probability ampli-
tude, and the square of its absolute value, |ψ|2, gives the probability density of
finding a particle at a given point in space. It asserts that quantum systems
exist in superpositions of states until measured, whereupon the wave function
collapses to a single outcome. Observers play a crucial role in this process, in-
fluencing the outcome through measurement. This emphasizes the probabilistic
nature of measurements and the impossibility of predicting precise outcomes
before measurement.

3.5.2 Operators
Physical observables are represented by linear operators. These operators act
on the wave function and linearly transform it into another wave equation.
Mathematically, wave function is a vector,living in a special vector space, called
the Hilbert Space. Hence the operators are matrices, operating on principles
of linear algebra.

3.5.3 Dirac Notation
Dirac notation, also known as bra-ket notation, is a concise mathematical frame-
work used in quantum mechanics used to represent vectors and inner products.
This notation elegantly represents vectors (states) and linear operators (observ-
ables) in a vector space.

• |ψ〉: a ket, represents a state vector, defined by


a1
a2
...
an


• 〈ψ|: a bra, represents a dual vector, defined by

(
a∗1 a∗2 · · · an

)
• 〈ψ |φ〉: an inner product, represents the dot product of two vectors, de-

fined by
(
a∗1 a∗2 · · · an

)

b1
b2
...
bn

 = a∗1b1 + a∗2b2 + ....+ a∗nbn

3.6 The Hilbert Space
Hilbert Space is a complete1 inner product space, which is set of all square-
integrable functions, on a specified interval, i.e. ∀ f,

∫ b
a
|f(x)|2dx <∞.

1Any cauchy sequence of functions in Hilbert Space converges to a function in the same
space.
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The inner product in Hilbert space is defined as:

〈f | g〉 =
∫ b

a

f∗g dx

Hence the norm is
〈f | f〉 =

∫ b

a

|f |2 dx

In terms of orthogonal basis |ei〉 of Hilbert space, a function can be expressed
as

|ψ(x)〉 =
∞∑
n=1

ci|ei〉

where ci = 〈ei |ψ〉, are the coefficients of expansion2. For a normalized wave
function i.e.

∫
|ψ|2 dx = 1 ∑

n

|cn|2 = 1

3.6.1 Hermitian Operators
Hermitian operators are linear operators that satisfy the following property:

〈ψ | Âφ〉 = 〈Âψ |φ〉

∀ f and g. These operators have real eigenvalues and orthogonal eigenvectors.
They are used to represent physical observables in quantum mechanics. In
dirac notation, hermitian operations, 〈ψ | Âφ〉 can be written as 〈ψ|Â |φ〉. The
hermitian conjugate of an operator Â is Â† such that

〈ψ | Âφ〉 = 〈Â†ψ |φ〉

For hermitian operators, Â = Â†.

3.6.2 Eigenvalue Problem
The eigenvalue equation for a hermitian operator is:

Â|ψ〉 = a|ψ〉

where a is the eigenvalue and |ψ〉 is the eigenvector. Determinate states of any
observable A are eigenfunctions of Â.
For any operator Â,

〈A〉 =
∑
n

an|cn|2

where an is corresponding base eigenvalue of Â3.
2Fourier’s Trick
3Â|en〉 = an|en〉
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3.7 The Heisenberg Uncertainity Principle
The Heisenberg Uncertainty Principle states that it is impossible to determine
both the position and momentum of a particle with infinite precision. Mathe-
matically, this is expressed as:

∆A∆B ≥ 〈[Â, B̂] | 〉
2ι

where ∆A and ∆B are the uncertainties (standard deviation) in observables
A and B respectively, provided Â and B̂ are non-commutative. For example,
taking position and momentum,

∆x∆p ≥ ~
2

This principle implies that particles do not have definite properties until mea-
sured, highlighting the active role of the observer. These errors are not random
experimental errors, but rather fundamental limits imposed by statistical nature
of quantum mechanics.

3.8 Angular Momentum
3.8.1 Introduction
In quantum mechanics, the concept of angular momentum is pivotal, mirroring
its classical counterpart but with significant quantum mechanical changes. The
angular momentum operator, denoted by L̂, covers the rotational symmetries
and dynamics of quantum systems. It is defined in terms of the position operator
r̂ and the momentum operator p̂ as:

L̂ = r̂ × p̂
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Figure 3.1: Actual Reason
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3.8.2 Angular Momentum Operators
The components of the angular momentum operator in Cartesian coordinates
are:

L̂x = ŷp̂z − ẑp̂y,
L̂y = ẑp̂x − x̂p̂z,
L̂z = x̂p̂y − ŷp̂x,

where the momentum operator p̂α is expressed as:

p̂α = −ι~ ∂

∂α

These components collectively describe the total angular momentum of a quan-
tum system.

3.8.3 Commutation Relations
The angular momentum components are non-commutative in nature and hence
their commutators are respectively:[

L̂x, L̂y

]
= ι~L̂z,[

L̂y, L̂z

]
= ι~L̂x,[

L̂z, L̂x

]
= ι~L̂y.

3.8.4 Eigenvalue Equations
The quantization of angular momentum is expressed through its eigenvalue
equations. The square of the angular momentum operator, L̂2, is given by:

L̂2 = L̂2
x + L̂2

y + L̂2
z.

Using the ladder operations, the eigenvalue equation for L̂2 is:

L̂2|ψ〉 = ~2l(l + 1)|ψ〉

where l is the orbital angular momentum quantum number, taking on inte-
ger values l = 0, 1, 2, . . .. The eigenvalue equation for the z-component of the
angular momentum, L̂z, is:

L̂z|ψ〉 = ~m|ψ〉

where m is the magnetic quantum number, ranging from −l to l in integer steps.
The components of angular momentum L̂x, L̂y, and L̂z cannot be simultaneously
determined due to their non-commutative nature. Specifically, the commuta-
tion relations

[
L̂x, L̂y

]
= ι~L̂z,

[
L̂y, L̂z

]
= ι~L̂x, and

[
L̂z, L̂x

]
= ι~L̂y imply
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that measuring one component of angular momentum disturbs the others. Con-
sequently, while we can precisely know the total angular momentum L̂2 and
one of its components, typically L̂z, the other two components (L̂x and L̂y) re-
main indeterminate. This uncertainty is a direct consequence of the Heisenberg
uncertainty principle.

3.9 Spin Angular Momentum
Apart from orbital angular momentum, elementary particles possess intrinsic an-
gular momentum as well, known as Spin Angular Momentum. Strange enough,
despite being point particles, these particles exhibit rotational momentum in-
trinsically. The spin angular momentum operator is denoted by Ŝ and its com-
ponents are given by:

Ŝx = ~
2σx

Ŝy = ~
2σy

Ŝz = ~
2σz

where σx, σy, and σz are the Pauli spin matrices given by:

σx =
(

0 1
1 0

)
σy =

(
0 −ι
ι 0

)
σz =

(
1 0
0 −1

)
The eigenvectors for the Ŝz matrix are:

|↑〉 =
(

1
0

)
|↓〉 =

(
0
1

)
Similarly, the eigenvectors for the Ŝx and Ŝy matrices can be calculated:

Eigenvectors of Ŝx : |+x〉 = 1√
2

(
1
1

)
|−x〉 = 1√

2

(
1
−1

)
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Figure 3.2: Visualisation for a Spinor

Eigenvectors of Ŝy : |+y〉 = 1√
2

(
1
ι

)
|−y〉 = 1√

2

(
1
−ι

)
These eigenvectors are also referred to as spinors and are normalized to

ensure that their total probability is equal to 1, a requirement in quantum
mechanics:

〈↑ | ↑〉 = 〈↓ | ↓〉 = 1

These spinors occupy an intermediate position between scalars and vectors. It
rotates to same configuration after 4π angle, unlike vectors (2π). When the
coordinate axes are rotated, this spinor changes as -

χ′ = U(θ)χ

where U(θ) is the rotation matrix. The rotation matrix, U(θ) = e
−ιθ·σ

2 where θ
points along the axis of rotation and σ corresponds to pauli matrices.

Stern-Gerlach Experiment

The Stern-Gerlach experiment is a classic demonstration of spin angular mo-
mentum. In this experiment, silver atoms are passed through a magnetic field
gradient, causing the atoms to deflect in different directions depending on their
spin orientation. The experiment shows that the spin of an atom can take on
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Figure 3.3: Stern-Gerlach Experiment

only two values, corresponding to the two possible orientations of the spin angu-
lar momentum vector. This is a direct manifestation of the quantization of spin
angular momentum. In summary, the deflection of particles in the experiment,
into discrete paths confirms the existence of spin and its quantized nature.
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Chapter 4

Tango with Invariance

Symmetry is an operation you can perform on a system that leaves it invariant,
carrying it into a configuration indistinguishable from the original. For example,
if you rotate a sphere by 360 degrees, it will look exactly the same as it did before
the rotation. This is an example of a symmetry operation. Properties of set of
all symmetry operations, in general -

1. Closure: If Ri and Rj are in the set, then the product RiRj is also in the
same set. In other words, ∃Rk ∈ set such that Rk = RiRj .

2. Associativity: Ri(RjRk) = (RiRj)Rk.

3. Identity: There exists an identity element I such that RiI = IRi = Ri ∀Ri
in the set.

4. Inverse: For every Ri in the set, there exists an inverse R−1
i such that

RiR−1
i = R−1

i Ri = I.

A set of elements that satisfies the above properties is called a group. The set of
symmetry operations of a system is called the symmetry group of the system.
This symmetry group provides a mathematical framework for describing the
symmetries of the system.
Groups can be represented using matrices, particle physicists’ favourite tool! In
the context of symmetries, matrices are used to represent transformations such
as rotations, reflections, and other symmetry operations.

4.1 Types of Groups
• Finite or Infinite: A finite group has a limited number of elements,

while an infinite group has an unbounded number of elements.

• Discrete or Continuous: A discrete group consists of isolated elements,
whereas a continuous group, also known as a Lie group, has elements that
form a continuum, often parameterized by continuous variables.
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• Abelian Group: A group in which the order of the elements does not
matter. Mathematically, the elements commute, RiRj = RjRi.

The important matrix for our use is the Unitary Matrix, which satisfies the
property U−1 = U† i.e. Hermitian. Unitary matrices preserve the inner product
in complex vector spaces. When the determinant of a unitary matrix U is
restricted to be 1, the group formed by such matrices is called the Special
Unitary group, denoted as SU(n), where n is the dimension of the matrices.

SU(n)’s that we need

• SU(2): It explains the spin of particles and the weak interactions in the
Standard Model.

• SU(3): It explains the theory of strong interactions, known as Quan-
tum Chromodynamics (QCD). It describes the symmetries of quarks and
gluons.

The group of real unitary matrices is called orthogonal group, O(n). Again if
determinant is restricted to 1, it is SO(n).

4.1.1 Homomorphic Groups
A group G is said to be homomorphic to a group H if there exists a function φ
from G→ H such that ∀ a,b ∈ G,

φ(ab) = φ(a)φ(b)

• Kernel: It is the set of elements in G that maps to the identity element
in H, φ(g) = IH ∀g ∈ G where IH is identity element in H

• Image: It is the set of elements in H having preimage in G, or φG.

4.1.2 Isomorphism
A homomorphism G → H is said to be isomorphism if φ is both injective and
surjective⇒ Bijective. Apart from the properties of homomorphism, existence
of inverse is unique to isomorphism. If φ : G → G is an isomorphism, then
there exists φ−1 : H→ G such that φ−1(φ(g) = g)∀g ∈ G.

4.2 Noether’s Theorem
For every differentiable symmetry of the action of a physical system corresponds
to a conservation law. Consider a physical system described by a Lagrangian
L and action S. As we know,

S =
∫
L(qi, q̇i, t) dt
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Figure 4.1: Symmetry and corresponding conservation law

A symmetric transformation (continuous) can be represented by:

qi → qi + εηi(q, q̇, t)

where ε → 0 and ηi is the transformation generator. Noether’s theorem states
that if the action S is invariant under a continuous symmetry transformation,
then there exists a conserved quantity. If δS = 0, then for the above changes,
there exists conserved current,Jν , known as Noether’s Current such that

∂Jν

∂xν
= 0

4.3 Isospin
Isospin or isobaric spin, is a artificial analogue to spin to describe the similarities
between protons and neutrons under the strong nuclear force. Despite their
different electric charges, protons and neutrons are nearly identical in mass and
interact similarly with other hadrons, suggesting an underlying symmetry. It is
denoted by I. This is mathematically represented using the formalism of spinors,
mainly SU(2) group.

4.3.1 Isospin Spinor and Its Components
Introduced by Heisenberg, the proton and neutron are treated as two states
of a nucleon doublet. The isospin state of a nucleon can be represented as a
two-component spinor:

χ =
(
χp
χn

)
where χp represents the proton state and χn represents the neutron state. χp =
1 andχn = 0 in case of proton and vice-versa.
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4.3.2 Isospin Operators
The isospin operators, analogous to the Pauli matrices used in spin-½ systems,
are given by:

I1 = 1
2

(
0 1
1 0

)
, I2 = 1

2

(
0 −i
i 0

)
, I3 = 1

2

(
1 0
0 −1

)
These operators act on the χ and obey the commutation relations of the SU(2)(Lie)
algebra.

4.3.3 Total Isospin and Projection
The total isospin I and its third component I3 are used to classify particles, just
like spin. For the nucleons:

I = 1
2 , I3 =

{
+ 1

2 for the proton
− 1

2 for the neutron

Strong Interactions are invariant under rotations in isospin space, and following
the Noether theorem, isospin is the conserved quantity. I is assingned to a
multiplet and I3 is assigned to each member of the multiplet. The multiplicity
is given by

multiplicity = 2I + 1

4.3.4 The Nishijima-Gell Mann Relation (for hadrons com-
posed of u,d and s quarks)

The third component of isospin is related to charge, Q of the concerned particle
and multiplet member with highest charge gets highest value I3 = I. The
charge of a particle can be related to its isospin and hypercharge (associated
with SU(3)) through the Nishijima-Gell Mann relation:

Q = I3 + Y

2

where Q is the electric charge, I3 is the third component of isospin, and
Y is the hypercharge, given by Y = A + S, A being baryon number and S is
strangeness. For consistency, all leptons and mediators are assigned I = 0, as it
doesn’t affects them.

4.3.5 Isospin Multiplets
Particles can be grouped into multiplets based on their isospin values:
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Isospin Doublets

The nucleon (proton and neutron) forms an isospin doublet:(
p
n

)
Isospin Triplets

Pions (π+, π0, π−) form an isospin triplet with I = 1:π+

π0

π−


In this case, π+ has I3 = +1, π0 has I3 = 0, and π− has I3 = −1.

4.3.6 Isosinglets
An isosinglet refers to a particle or a state that has an isospin quantum number
I=0. This means that the particle is invariant under isospin transformations,
much like a scalar is invariant under rotations in ordinary three-dimensional
space. Examples include λ baryon and deutron nucleus.

4.3.7 Symmetric and Antisymmetric States
The particle states can be further classified as either symmetric or antisymmetric
under exchange:

Symmetric States

For two nucleons, the symmetric combination is:

χsymmetric = 1√
2

(χAχB + χBχA)

Antisymmetric States

The antisymmetric combination for two nucleons is:

χantisymmetric = 1√
2

(χAχB − χBχA)

4.4 Gell-Mann’s Eightfold Way
Gell-Mann extended this concept to the larger group SU(3). The Eightfold
Way is a classification scheme for hadrons that organizes hadrons into multiplets
based on their properties under the SU(3) flavor symmetry, which includes the
up, down, and strange quarks.
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4.4.1 Baryon Octet
The baryon octet includes particles like the proton, neutron, Λ, and Σ baryons,
arranged in a hexagonal pattern reflecting their isospin (as s in the image) and
hypercharge values (as q).

Figure 4.2: Baryon Octet

4.4.2 Meson Octet
The meson octet includes particles like the pions and kaons, also arranged in a
hexagonal pattern.

4.4.3 Baryon Decuplet
The baryon decuplet includes 10 baryons under SU(3), including particles like
∆, Σ, Ξ, and Ω.

36



Elementary Particle Physics Tango with Invariance

Figure 4.3: Meson Octet

Figure 4.4: Baryon Decuplet
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Chapter 5

The Eccentric Elegance of
Symmetry

5.1 Parity
Parity is a fundamental symmetry operation that involves the inversion of spa-
tial coordinates, i.e. r→ -r. If a system has a wave function ψ(r), this operation
transforms it into ψ(−r). Parity can be even or odd depending on ψ. For mass-
containing particles, like muons and electrons; notion of parity is quite simple.
It solely depends on frame of reference of the observer. For example, if moving
particle is rotating clockwise for a observer in frame with vrel = vparticle, then
it would be rotating anticlockwise for a observer in frame moving with velocity
greater than particle, i.e. vrel < 0.
In case of massless particles, like neutrinos (almost zero rest mass), things be-
come complicated as they move at speed equals to that of light, which is an
absolute quantity in relativity. Here particle can be only in one defined rotation
or in other words, the parity/helicity is not interconvertible.

5.1.1 Helicity
Helicity is defined as the projection of a particle’s spin onto its direction of
motion. For a particle with momentum ~p and spin ~S, helicity is given as:

h = ~p · ~S
|~p|2

On simpler terms, helicity can be +1 or -1, representing right handed and left
handed spins respectively. Helicity is invariant under Lorentz transformations
but not under parity transformations for massless particles as explained above.
Strong and Electromagnetic Interactions conserve parity, implying that physical
processes and their mirror images are indistinguishable. But conservation of
parity gets violated in weak interactions, this was famously demonstrated in the
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1950s through experiments on beta decay, where it was observed that neutrinos
are produced predominantly with left-handed helicity.

Figure 5.1: Parity States

5.1.2 Parity Operator
It is defined as the operator that reverses the sign of all spatial coordinates. It
is represented by the symbol P and acts on ψ(r) as:

Pψ(r) = ψ(−r)

Applying P again we get
P2ψ(r) = ψ(r)

implies P2 = I or eigenvalues of parity operator are ±1. A system in an
eigenstate of the parity operator satisfies:

Pψ(r) = ±ψ(r)

Classification

Vectors and scalars can be categorized based on their transformation properties
under parity.

• Scalar: A quantity with spin = 0 that is invariant under parity transfor-
mations, a P−→ a.

• Pseudoscalar: A quantity with spin = 1 that changes sign under parity
transformations, a P−→ −a.
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• Vector: A quantity with spin = 1 that changes sign under parity trans-
formations, ~V P−→ −~V . Also known as polar or true vector.

• Pseudovector: A quantity with spin = 1 that is invariant under parity
transformations, ~V P−→ ~V . Also known as axial or false vector.

5.1.3 Composite Systems
The parity of a composite system in ground state can be determined by the
product of the parities of its constituents. Let say a system has constituents
with parity eigenvalues P1 and P2, the net parity eigenvalue is given by

P = P1P2

This gives intution that parity operator could be of unitary form (i.e e−ιP̂ ).
In the context of particle physics, fermions and their antiparticles exhibit op-
posite intrinsic parity, whereas bosons and their antiparticles share the same
intrinsic parity. By convention, quarks are assigned an intrinsic parity of +1,
while antiquarks are assigned an intrinsic parity of -1. The photon, being a
vector particle, possesses an intrinsic parity of -1.

5.2 Charge Conjugation
Charge conjugation, denoted by the operator C, transforms a particle into its
corresponding antiparticle. For a particle/field ψ(x) , the charge conjugated
particle/field ψc(x) is given by:

ψc(x) = Cψ(x)C−1

In short, it involves changing the sign of all internal quantum numbers (such as
charge, baryon number, lepton number). If ψ(x) is an eigenstate of C, we have:

Cψ(x) = λCψ(x)

where λC is the eigenvalue. For bosons, λC = ±1, corresponding to even (sym-
metric) and odd (antisymmetric) states under charge conjugation.

5.2.1 Composite Systems
Charge conjugation is a multiplicative, same as parity. For a composite system
consisting of two particles with charge conjugation eigenvalues C1 and C2, the
net charge conjugation eigenvalue C is given by:

C = C1 · C2

This implies that charge conjugation operator could be of unitary form sim-
ilar to parity(i.e e−ιĈ).
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Figure 5.2: Parity States

5.2.2 Limited Usage of C
Most particles are not eigenstates of the charge conjugation operator. This is
because charge conjugation changes particles into antiparticles, and for most
particles, the resultant state is distinct from the original state. For example, an
electron is not an eigenstate of C because C transforms it into a positron, which
is a different particle. A special condition where particles can be eigenstates of
charge conjugation occurs in neutral mesons and photon. Neutral mesons, such
as the neutral pion π0, are their own antiparticles and can be eigenstates of C
with eigenvalues ±1
Charge conjugation symmetry is conserved in electromagnetic and strong inter-
actions but violated in weak interactions.

5.2.3 G-Parity
G-parity is a extension of charge conjugation, combining charge conjugation
with isospin symmetry. If rotated about axis-2 in isospin space, the G-parity
operator G is defined as:

G = CeiπI2

where I2 is the second component of the isospin operator. G-parity is useful in
classifying the properties of hadrons. All mesons with strangeness/beauty/charm/truth
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= 0 are eigen states of G, eigenvalues given by:

Gψ = (−1)ICψ

5.3 CP Violations
Weak Interactions are not invariant neither under parity nor charge conjugation.
But the combined operation of CP works quite well. CP symmetry implies that
the laws of physics should remain unchanged if a particle is replaced by its
antiparticle and its spatial coordinates are inverted. Mathematically, the CP
acts on particle field ψ as:

CPψ = λCPψ

where λCP is the eigenvalue of CP operator.

5.3.1 K0 Dilemma
Neutral kaons ( K0 and K̄0 ) provide a classic example of CP symmetry and
its violation. These particles can oscillate between each other due to weak
interactions. The CP operator in this case comes out to be:(

0 1
1 0

)
The eigenvalues of this matrix are ±1. The result of this operation is that the
neutral kaons are in a superimposed state, one which has long lifetime (with
λCP = 1) and short life time(λCP = −1). The CP eigenstates are:

|KL〉 = |K
0〉+ |K̄0〉√

2

|KS〉 = |K
0〉 − |K̄0〉√

2
In this system, CP violation is observed in the decay processes of the long-lived
kaon (KL). The KL decay into 3π system and KS into 2π system. When the
long-lived particle was studied experimentally, discreprencies were encountered,
that is, KL is not a perfect eigenstate of CP but has a small mixture of KS as
well. Mathematically,

|K ′L〉 = |KL〉+ ε|KS〉√
1 + ε2

where ε is the CP violation parameter. The value of ε was measured to be
2.24× 10−3.

The primary reason for CP violation is the presence of complex phases in
the parameters of the Standard Model, particularly in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix that describes quark mixing. The CKM matrix in-
cludes complex phases that lead to differences in the behavior of particles and
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Figure 5.3: Interconversions of K0

antiparticles.. Understanding CP violation is crucial for explaining the matter-
antimatter asymmetry in the universe.

5.4 Time Reversal
Time reversal symmetry (T ) refers to the invariance of physical laws under
the reversal of the direction of time. If a physical process is described by a
Hamiltonian H, time reversal symmetry implies that:

H = T HT −1
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where T is the time reversal operator.
For electromagnetic and strong interactions, time reversal is true always, but
again comes weak interaction to spoil the party!
This shows that time reversal is not a perfect symmetry in nature, but something
else is, and by intution it is T CP.

5.5 T CP Theorem
The T CP theorem from inherited from Quantum Field Theory, states that com-
bined operation of time reversal, charge conjugation and parity (in any order)
is an exact symmetry of any interaction. The physical laws should remain un-
changed if a particle is replaced by its antiparticle, its spatial coordinates are
inverted, and the direction of time is reversed. If the theorem is correct, ev-
ery particle must have precisely the same mass and lifetime as its antiparticle.
Experiments till date prove it correct within range of errors, and any departure
from this theorem will unleash absolute madness in the Standard Model.

Figure 5.4: Neat Visualisation
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Chapter 6

The Ultimate Theory

Quantum Field Theory is the framework which unites quantum mechanics with
special relativity. It explains the interactions of elementary particles and fields
they interact through.

6.1 Classical vs Quantum Fields
Classical fields describe the distribution of physical quantities in space and time,
connected through differential equations.
Quantum fields are discrete, quantized; where they become operators that can
create and annihilate particles.

6.1.1 Lagrangian and Hamiltonian Formulations
The dynamics of fields are described by the Lagrangian density L. The action
S is the integral of the Lagrangian density over spacetime:

S =
∫
L dx4

From the Lagrangian, the equations of motion can be derived using the Euler-
Lagrange equation:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0

where φ is the field. The Hamiltonian density H is defined as the Legendre
transform of the Lagrangian density:

H =
∑
i

πi∂0φi − L

where πi is the conjugate momentum of the field φi.
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Figure 6.1: Field Theory in a glance

6.2 Path Integral Formulation
The amplitude to propagate from a point qi to a point qf in time T is gov-
erned by the unitary operator e−ιHT , where H is the Hamiltonian. Precisely
writing the idea, if |q〉 represents the state of particle at q, the amplitude is
〈qf | e−ιHT |qt〉. The path integral formulation is a way to calculate this ampli-
tude. The amplitude is given by the sum overall possible paths connecting the
initial and final points.

〈f |e−iHt/~|i〉 =
∫
Dφ eiS[φ]/~ (6.1)

where Dφ is the path integral measure, and S(φ) is the action. After performing
a mathematical trick, derived rigorously, known as Wick rotation in euclidean
time (t → −ιt) the path integral converts to Euclidean path integral Z given
by:

Z =
∫
Dφ e−

∫ T
0
H dt (6.2)

6.3 Vacuum in QFT
In classical physics, the vacuum is considered to be completely empty, devoid
of any particles or activity. However, QFT assumes that the vacuum is instead
teeming with activity due to quantum fluctuations.
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Zero Point Energy

The uncertainityprinciple implies that even in the lowest energy state, there
is always some inherent uncertainty and, consequently, some residual energy.
This residual energy is known as zero-point energy. The quantum fluctuations
are result of this zero-point energy only. These fluctuations manifest as tempo-
rary, spontaneous creation and annihilation of particle-antiparticle pairs. The
transient particles are termed as virtual particles. In the absence of external
particles, Feynman diagrams can include closed loops, known as vacuum bub-
bles, which represent the virtual particles fluctuating in and out of existence.

Figure 6.2: Virtual Bubble

Physical Implications include Casimir Effect, Lamb Shift and Hawking
Radiation.

Figure 6.3: Hawking Radiation

Figure 6.4: The Casimir Effect
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6.4 Feynman Calculus
6.4.1 Differential Cross Section
The differential cross section, dσdΩ , is defined as the ratio of the total cross section
σ that is scattered into a given solid angle dΩ1. Imagine a beam of particles
with uniform luminosity L, then dN = LDσ is the number of particles per unit
time passing through area dσ. This dN is known as event rate and differential
cross section D(θ) is given by :

dσ

dΩ = dN

LdΩ

6.4.2 Fermi’s Golden Rule
It formulates that a transition rate is given by the product of the phase space and
the absolute square of amplitude. Without proving, I mention the mathematical
result from pertubation theory:

Wi→f = 2π|〈f | Ĥ ′|i〉|2ρ(Ef )
~

(6.3)

where Wi→f is transition rate, Ĥ ′ is perturbing Hamiltonian and ρ is density
of states.
After applying the above mathematical treatment on decay and scattering of
particles, it turns out that the decay rate τ and in turn D(θ) are directly pro-
portional to absolute square of amplitude, |M|2.

τ ∝ |M|2

For calculating M, we need to use Feynman’s Rules.

6.4.3 Feynman’s Rules
These rules provide a systematic way to compute scattering amplitudes using
diagrams, derived from the path integral formulation.

1. Notation:

• Label the incoming and outgoing four-momenta p1, p2, . . . , pn.
• Label the internal momenta q1, q2, . . ..
• Put an arrow beside each line to indicate the ’positive’ direction

(forward in time for external lines, arbitrary for internal lines).

2. Vertex Factor: For each vertex, write down a factor −ig, where g is the
coupling constant that specifies the strength of the interaction between
particles.

1Given by dΩ = sin(θ)dθdφ where θ is the polar angle and φ is the azimuthal angle in
spherical coordinates.
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p1

p2

p3

p4

p5

p6

Figure 6.5: Feynman Diagram for a Toy Theory

3. Propagators: For each internal line, write a factor:

i

q2
j −m2

jc
2

where qj is the four-momentum of the line and mj is the mass of the
particle the line describes2.

4. Conservation of Energy and Momentum: For each vertex, write a
delta function of the form:

(2π)4δ4(k1 + k2 + k3)

where the k’s are the three four-momenta coming into the vertex. If the
arrow leads outward, then k is minus the four-momentum of that line.
This factor ensures conservation of energy and momentum at each vertex.

5. Integration over Internal Momenta: For each internal line, write
down a factor:

1
(2π)4 d

4qj

and integrate over all internal momenta.

6. Cancel the Delta Function: The result will include a delta function:

(2π)4δ4(p1 + p2 + · · · − pn)

reflecting overall conservation of energy and momentum. Erase this factor
and multiply by i. The result is M.

2A virtual particle doesn’t lies on the mass shell.
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6.4.4 Renormalisation
While calculating higher order diagrams, one often encounters integrals that
diverge to infinity. Renormalization is the process by which we absorb these in-
finities into redefined (”renormalized”) parameters of the theory, such as masses
and coupling constants. A high momentum cutoff is introduced and the mass
and coupling factor change are considered:

mphysical = m+ δm gphysical = g + δg

Renormalization reflects the fact that the bare parameters in the Lagrangian
are not the physical, measurable quantities. Instead, the physical quantities are
those that remain after the infinities are canceled.

6.5 The Klein - Gordon Equation
The Klein - Gordon equation is a relativistic wave equation, derived for particles
with spin = 0 or scalars. Considering free particles -
The energy - mass relation is given as : E2 = p2c2 +m2c4 or in a more elegant
way

pµpµ −m2c2 = 0

Replacing pµ with its operator ι~∂µ 3 -

−~2∂µ∂µψ = m2c2ψ or

− ∂2ψ

c2∂t2
+∇2ψ = (mc

~
)2ψ

This is the Klein - Gordon equation. This is a second order equation in time
and is incompatible with Born’s Statastical Interpretation.

6.6 The Dirac Equation
The Dirac equation is a relativistic wave equation, derived for particles with
spin = 1

2 or fermions.

pµpµ −m2c2 = (βκpκ +mc)(γνpν −mc)

where βκ and γν are coefficients to be determined. Comparing the LHS and
RHS terms -

βκ = γκpµpµ = γκγνpκp
ν

3∂µ ≡ ∂
∂xµ
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In long form, this is

(p0)2 − (p1)2 − (p2)2 − (p3)2 = (γ0)2(p0)2 + (γ1)2(p1)2 + (γ2)2(p2)2

+ (γ3)2(p3)2 + (γ0γ1 + γ1γ0)p0p1

+ (γ0γ2 + γ2γ0)p0p2 + (γ0γ3 + γ3γ0)p0p3

+ (γ1γ2 + γ2γ1)p1p2 + (γ1γ3 + γ3γ1)p1p3

+ (γ2γ3 + γ3γ2)p2p3 (6.4)

Solving by assuming γ as a number, there is no solution whatsoever. Therefore
γ’s are matrices, and the anticommutator is given by -
γµ, γν = 2gµν
where gµν is the Minkowaski Metric. The smallest matrices which work are of
size 4× 4.

γ0 =
(
I 0
0 −I

)
γi =

(
0 σi

−σi 0

)
where I is the 2 × 2 identity matrix and σi are the Pauli matrices. We obtain
after putting values -

γµpµ = mc

Replacing the eigenvalues with respective operators, we get, drumrolls and be-
hold

ι~∂µψ = mcψ

This is the Dirac equation. The Dirac equation is a first order equation
in time and is compatible with Born’s Statastical Interpretation. ψ is now a
four-element column matrix, and is a spinor known as bi-spinor or Dirac’s
spinor.
The Dirac equation predicts the existence of anti-particle, and in general,
yields four solutions. Two solutions correspond to matter and other two corre-
spond to anti-matter, depending on spin up or spin down.
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Chapter 7

Richard P. Feynman’s Own
Child

Quantum Electrodynamics (QED) is the quantum field theory that describes
the interaction of charged particles with the electromagnetic field. It provides
a comprehensive framework for understanding phenomena such as scattering,
decay processes, and the interactions of photons with matter.

7.1 Maxwell Equations
In classical electrodynamics, Maxwell’s formulation gives four fundamental equa-
tions -

∇ · ~E = 4πρ ∇ · ~B = 0

∇× ~E + 1
c

∂B

∂t
= 0 ∇× ~B = 1

c

∂E

∂t
+ 4π

c
J

where ρ is the charge density and J is the current density.
In relativity, ~E and ~B form a antisymmetric tensor, field strength tensor Fµν
given as-

Fµν =


0 Ex Ey Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0


The four Maxwell’s equations can be written as, in terms of Fµν -

∂µF
µν = 4π

c
Jν

Also field strength can be written in terms of vector potential A as

Fµν = ∂µAν − ∂νAµ
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p2

p4

p1

p3

γ

Figure 7.1: Feynman Diagram for Moller Scattering

The Maxwell Equation reduces to-

∂µ∂
µAν − ∂ν∂µAµ = 4π

c
Jν

This potential A is not uniquely defined, i.e. if A → A′ = A+ ∂µΛ then -

∂µA′ν − ∂νA′µ = ∂µAν − ∂νAµ

Such a change of potentials, which has no effect on the fields, is called gauge
transformation. This renders

∂µAµ = 0

This is the Lorentz Condition.
The Maxwell equation further simplifies to

∂µ∂νAν = 4π
c
Jν

1 For a free photon, Jν = 0, hence it satisfies ∂µ∂νAν = 0, which is Klein-
Gordon Equation for massless particle. Its solution turns out to be -

Aµ = ae−
ι
~ ~p·~xεµ(p)

where a is a constant and εµ(p) is a four-vector.

7.2 Feynman Rules for QED
1. Notation:

• Label the incoming and outgoing four-momenta p1, p2, . . . , pn.
1∂µ∂ν = 1

c2
∂2

∂t2
−∇2 is known as d’Alembertian.
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• Label the internal momenta q1, q2, . . ..
• Put an arrow beside each line to indicate the ’positive’ direction

(forward in time for external lines, arbitrary for internal lines).

2. Vertex Factor: For each vertex, write down a factor igeγµ, where ge is
the coupling constant that is related to the charge of electron as:

ge = e

√
4π
~c

3. Propagators: Each internal line contributes a factor as:

Electrons and Positrons: = ι
(γµqµ +mc)
q2 −m2c2

Photons: = −ιgµν
q2

4. Conservation of Energy and Momentum: For each vertex, write a
delta function of the form:

(2π)4δ4(k1 + k2 + k3)

where the k’s are the three four-momenta coming into the vertex. If the
arrow leads outward, then k is minus the four-momentum of that line.
This factor ensures conservation of energy and momentum at each vertex.

5. Integration over Internal Momenta: For each internal line, write
down a factor:

1
(2π)4 d

4qj

and integrate over all internal momenta.

6. Cancel the Delta Function: The result will include a delta function:

(2π)4δ4(p1 + p2 + · · · − pn)

reflecting overall conservation of energy and momentum. Erase this factor
and multiply by i. The result is M.

7. Antisymmetrization: Include a minus sign between diagrams that differ
only in the interchange of two incoming electrons or positrons.

It is important to track each fermion line backward through the diagram, to
assemble the integral in correct order of multiplication.
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e−

γ

e−

γ

e−

Figure 7.2: Feynman Diagram for Compton Scattering

p2

p4

p1

p3

q

Figure 7.3: Feynman Diagram for Annihilation

7.3 The Lagrangian
The whole QED can be descirbed using a Lagrangian, which is given by:

LQED = −1
4FµνF

µν + ψ̄(iγµDµ −m)ψ (7.1)

where Dµ = ∂µ + ieAµ is the covariant derivative and ψ is the Dirac field for
the particle.

Using the feynman rules over each vertex, decay rates can be calculated for
a process, with help of amplitude and phase space. Example processes could be
Moller scattering, compton effect and pair annihilation.

7.4 Vacuum Polarisation
Vacuum polarization refers to the process in which a photon propagates through
the vacuum and interacts with virtual electron-positron pairs, the virtual bub-
ble. This effect modifies the photon propagator and changes the coupling con-
stant. After performing the customary renormalisation step to sweep infinities,
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there remains a finite correction term in the coupling constant, g, which depends
on q2. In other words, the effective charge of any particle, depends on the mo-
mentum transferred in the collision or the relative distance between interacting
particles. It is like screening of the charge. These changes become quite visible
in the fine structure constant and can be written as-

α(q2) = α(0)(1 + α(0)
3π f( −q

2

m2c2
))

where f is an approximation function from renormalisation. This correction is
very small and hence its effect are seldom visible in the classical world.
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