

OPTIMIZED PROCESS SYNTHESIS OF BIODIESEL PRODUCTION FROM MICROALGAE

Soumyajit Sen Gupta, Sharad Bhartiya, Yogendra Shastri Department of Chemical Engineering, Indian Institute of Technology, Bombay

Motivation and Approach:

- Microalgae- A promising source of renewable energy, especially for India
- Techno-economic feasibility not yet achieved
- Multitude of alternatives at each step

Optimization model features:

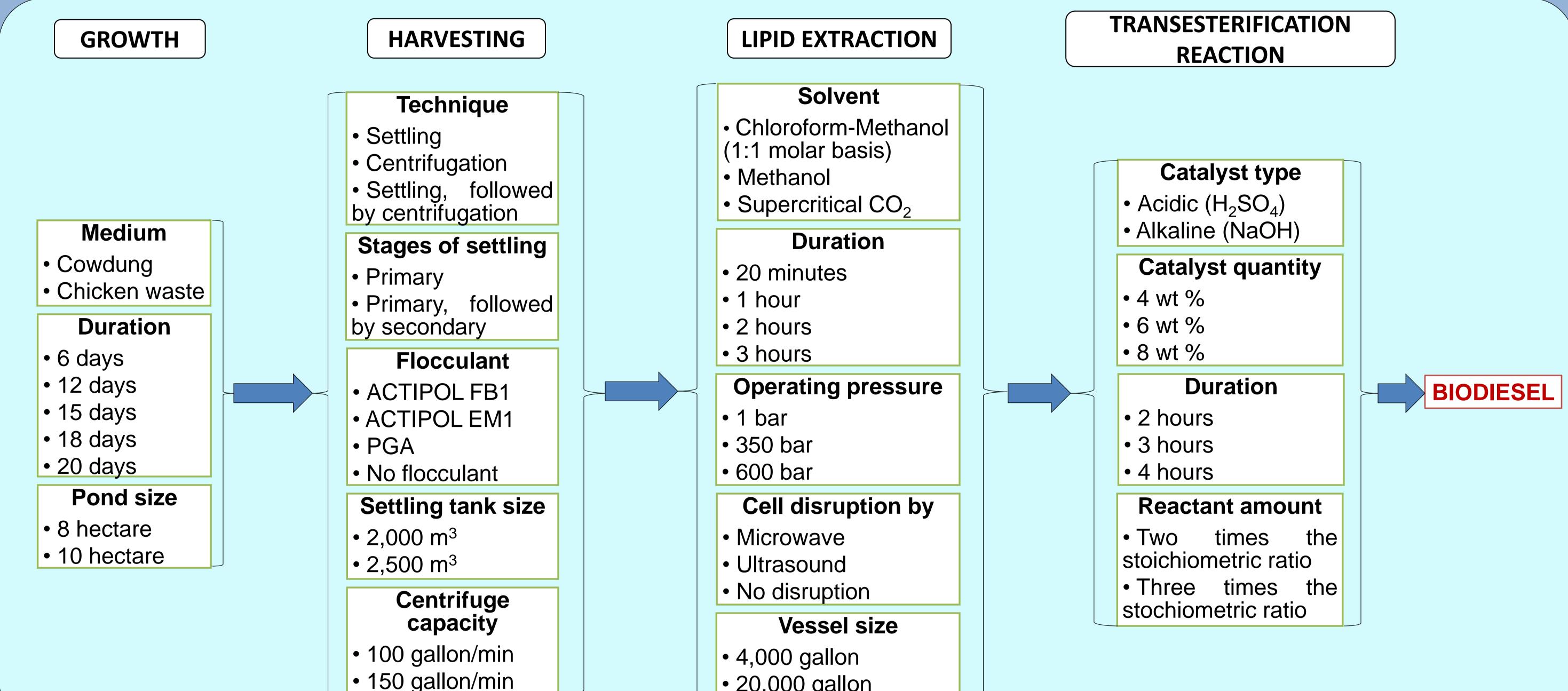
- Mass balance across processes
- Performance of process, a function of
- design and operating parameters
- Cost expressions for equipments

Conclusions:

- Production cost (Base case): US\$ 13.286/L
- Step of growth: 88 % of net cost
- Critical decision making for lipid extraction

Future work:

- Model based superstructure optimization
- Integration of flowsheet and design optimization


• Objective: Minimize Net ALCC

Scheduling based on batch time

Integrated co-generation of products

Integration with flue gas and waste water

Biodiesel from microalgae: Processes and the superstructure

• 20,000 gallon

Results: Scenarios for production of 30 tons/day biodiesel from *Chlorella sp.*

Cases	Base Case		Heterogeneous strain		Supercritical lipid extraction	
Steps of the process	Net cost (US \$/L)	Optimized model decisions	Net cost (US \$/L)	Optimized model decisions	Net cost (US \$/L)	Optimized model decisions
	13.286		3.331		15.032	
Growth of microalgae	11.662	 Medium of chicken waste for 18 days in 3024 ponds (10 ha each) 	2.499	 Medium of chicken waste for 18 days in 648 ponds (10 ha each) 	2.916	 Medium of chicken waste for 18 days in 756 ponds (10 ha each)
Harvesting of solution	0.829	 Settling with ACTIPOL FB1 (1635 kg/batch) in 218 tanks (2500 m³ each) 	0.173	 Settling with ACTIPOL FB1 (340 kg/batch) in 46 tanks (2500 m³ each) 	0.205	 Settling with ACTIPOL FB1 (404 kg/batch) in 54 tanks (2500 m³ each)
Lipid extraction	0.13	 Solvent: Chloroform : Methanol 1:1 (4663 L/batch) Duration: 2 h Vessel:223 in number (20,000 gallon each) 	0.029	 Solvent: Chloroform : Methanol 1:1 (1146 L/batch) Duration: 2 h Vessel:47 in number (20,000 gallon each) 	11.285	 Solvent: Supercritical CO₂ (960 tons/batch) @ 600 bar Duration: 3 h Vessel:275 in number (4,000 gallon each)
Trans- esterification reaction	0.665	 Alcohol: 2 times the stoichiometric (1241 kg/batch) Catalyst: Alkaline (6 wt %) (341 kg/batch) Duration: 4 h Reactor:18 in number 	0.63	 Alcohol: 2 times the stoichiometric (1233 kg/batch) Catalyst: Alkaline (6 wt %) (333 kg/batch) Duration: 4 h Reactor:5 in number 	0.626	 Alcohol: 2 times the stoichiometric (1241 kg/batch) Catalyst: Alkaline (6 wt %) (341 kg/batch) Duration: 4 h Reactor:1 in number

