

INTEGRATED ALGAE BIOREFINERY: DESIGN, OPTIMISATION AND CONTROL

Soumyajit Sen Gupta*, Riju De*, Pratik Gholkar**, Sharad Bhartiya*, Yogendra Shastri* * Department of Chemical Engineering, IIT Bombay ** Department of Biochemical Engineering, MIT Manipal

Kinetics of Transesterification Reaction

Optimal Integrated Biorefinery Synthesis

Advantages:

- Renewable, green, and local
- Provides higher biomass yield per unit area
- Provides various value-added co-products
- Bio-mitigates industrial effluent and flue gas Major limitation:
- Techno-economically infeasible

Proposal: A multi-dimensional research approach using process systems engineering
Explore novel process options: Design
Improve existing process options: Control
Develop optimal biorefinery: Synthesis

Hydrothermal Liquefaction

An alternative method of extracting oil from algae, using high pressure and temperature (4500 psi / 200⁰-350⁰C) reaction in aqueous media <u>Advantages</u>

- Cost saving since water removal not needed
- Easy product recovery since byproduct converted during the reaction
- <u>Goal:</u> Develop and validate reaction kinetics

Advanced Model Based Control of a Batch Transesterification Reactor

Optimal control: Open loop controlEnd product quality control using closed loop control

-Batch to batch iterative learning control -Within batch on-line shrinking horizon model predictive control (SHMPC)

-Midcourse correction policy (MCC)

Implementation of Optimal Control

Determination of best temperature profile of a

- Development of process super-structure
- Optimisation of process flow-sheet
- Optimisation of batch process scheduling
- Integration of energy and value added products

Optimisation Model Development

- Focus on growth and harvesting
- Growth using open-pond cultivation
- Harvesting using a combination of sedimentation, and centrifugation
- Cost, efficiency and performance considerations

Equipment	Decision variables
Growth pond	Pond dimension, Growth medium, Growth duration
Settling tank	Flocculant being added, Dimension of the tank
Centrifuge	Capacity

Objective:

Minimise Annualised Life Cycle Cost <u>Constraints</u>: Types of equipment used, their capacities and operating parameters <u>Model:</u> MILP with 54895 equations and 74801

model for process design and optimisation

Model Development

batch reactor over a time interval $[t_0, t_f]$ such that C_E is maximized $MinJ(T) = -C_E(t_f)$

s.t.

$$\frac{dC_i}{dt} = f(C_i, T, t); C_i(0) = C_0$$

$$C_i = [C_{TG}; C_{DG}; C_{MG}; C_E; C_A; C_{GL}];$$

Preliminary Results

 Comparison of methyl ester concentration between optimal temperature profile and base temperature of 315K
 C_{315K}=0.7487 mol/L (base case); C_{Optimal}=0.7748 mol/L variables

Preliminary Results

- *Chlorella vulgaris* as algal strain
- 230.55 Mg of biodiesel per day
- Result: Cost of growth and harvesting = 0.886 \$/1

For any comments/ suggestions/ queries contact: Prof. Yogendra Shastri, Chemical Engineering Department, IIT Bombay